PHYSICAL REVIEW E

VOLUME 49, NUMBER 2

FEBRUARY 1994

Using neural networks for controlling chaos

P. M. Alsing,* A. Gavrielides,’ and V. Kovanis?
Nonlinear Optics Center, Phillips Laboratory, 3350 Aberdeen Avenue SE, Kirtland Air Force Base, New Mezico 87117-5776
(Received 9 August 1993)

A feed-forward backpropagating neural network is trained to achieve and maintain control of
the unstable periodic orbits embedded in a chaotic attractor. The controlling algorithms used for
training the network are based on the now standard scheme developed by Ott, Grebogi, and Yorke
[Phys. Rev. Lett. 64, 1196 (1990)], including variants that utilize previous perturbations and/or

delayed time-series data.

PACS number(s): 05.45.+b, 42.79.Ta

I. INTRODUCTION

Chaotic systems are characterized by their sensitive
dependence to small perturbations. In recent years, an
abundance of theoretical and experimental research has
been developed to capitalize on this fact and utilize it to
control chaotic systems by applying very small, appro-
priately timed perturbations. Researchers have demon-
strated the control of chaos in a host of physical systems
ranging from lasers and electronic circuits to chemical
and biological systems. For an excellent, recent review
article see [1] and references therein.

Neural networks are useful for a vast array of applica-
tions involving pattern and symbol recognition as well as
for numerical computations. Recently, neural networks
have been employed in the arena of dynamical systems
as a tool for recognizing chaos in noisy experimentally
obtained signals [2,3]. In this work we combine the two
ideas to train a feed-forward backpropagating neural net-
work to control a chaotic dynamical system. We demon-
strate the ability of the neural network to act as a chaotic
controller which can be trained on a variety of controlling
algorithms.

In this paper we train the neural network from a
time series generated from a known, deterministic chaotic
map. However, it is important to note that the train-
ing of the neural network does not rely on a detailed, a
priori knowledge of this mapping. The training of the
neural network is accomplished solely from the data it
receives at its inputs. Whether these data are generated
deterministically from a known mapping or come from
a given experimental time series is of no consequence to
the training of the neural network. Our decision to use
data generated analytically from a map was made purely
for computational convenience. In Sec. IVC we discuss
how current time-series analysis techniques can be used
to train the neural network given only an experimental
time series.

*Electronic address: alsing@arom.plk.af.mil
tElectronic address: tom@photon.plk.af.mil
{Electronic address: kovanis@xaos.plk.af.mil

1063-651X/94/49(2)/1225(7° “$06.00 49

This paper is organized as follows. In Sec. IT we briefly
review the central ideas involved in controlling chaotic
trajectories. In Sec. III we present a brief overview of
backpropagating neural networks. In Sec. IV we demon-
strate the ability of the neural network to control an un-
stable periodic orbit of a chaotic map employing three
different controlling schemes. Finally, in Sec. V we sum-
marize our results and conclude.

II. CONTROLLING CHAOS

The notion of controlling chaos in nonlinear dynamical
systems has found widespread popularity since the pub-
lication of the seminal paper by Ott, Grebogi, and Yorke
[4]. The central idea for controlling chaos is based on
the observation that a chaotic attractor has embedded
within it an infinite number of unstable periodic orbits.
These unstable periodic orbits are characterized by hav-
ing a stable manifold for which nearby trajectories are at-
tracted to this orbit, and an unstable manifold for which
nearby trajectories are repelled away from this unsta-
ble orbit. By applying judiciously chosen perturbations
to an accessible system parameter the authors showed
that such unstable periodic orbits could be stabilized.
The advantage of their algorithm, colloquially called the
OGY method, is that it does not require knowledge of the
system equations. In addition, by using the method of
embedding coordinates [5], the information required for
controlling chaos can be constructed from a single exper-
imental time series (e.g., a current or voltage signal).

Let £, be the phase-space values at the crossing of
some surface of section through which the trajectories of
some dynamical system pass. There exists a Poincaré
map F, depending on some control parameter p, which
relates the values of successive iterative crossings via
&.+1 = F(&,,p). In their original paper, Ott, Grebogi,
and Yorke derived a formula for the perturbations neces-
sary to control the unstable periodic orbits

A Fu-(én —fF(Po))
)‘u‘l fu'g ’

Here, A, is the eigenvalue of the unstable contravariant

5pn = (2‘1)

1225 ©1994 The American Physical Society

1226 P. M. ALSING, A. GAVRIELIDES, AND V. KOVANIS 49

eigenvector f, of the local mapping M = D¢F (&, po),
evaluated at the fixed point €p, of F, and g =
D, F(&F, po) is the shift of the fixed point due to a change
in the control parameter. The OGY formula is derived by
requiring that, upon application of the perturbation, the
next iterate of the mapping falls on the stable manifold
of the fixed point. If this is the case, then successive iter-
ates of the mapping will be attracted to the fixed point,
and a period-1 orbit will have been extracted from the
chaotic attractor.

In their original paper on controlling chaos [4] the au-
thors demonstrated that the algorithm, Eq. (2.1), was
tolerant of noise. The amount of noise for which control
can still be successfully maintained can be quantified. By
setting dp, equal to the maximum allowable perturbation
dp, and inverting Eq. (2.1), one can find the maximum
distance £ from the fixed point in which the applied
perturbations induces control,

& =Fu- (€ —€r(po)) = 11— A1) Fu - glop..

Suppose one now adds noise to the dynamical system of
the form €d,, where §, is a Gaussian random variable
of mean zero and unit variance and € is a small number
specifying the intensity of the noise. The control condi-
tion in the absence of noise, {} = 0, becomes £* = € in
the presence of noise, where §* = f, - 8,,. Therefore, if
the noise level is bounded |0%| < dyax, then control will
be maintained as long as €.y < £¥.

The controlling algorithm can be generalized for situa-
tions in which there is more than one unstable direction
[6]. It has been adapted for a variety of situations in
which the mapping F may depend on the previous per-
turbation [7,8]. The restriction of achieving control by
using all the phase-space variables € can be lifted and
replaced by one in which a single phase-space variable is
used. This requires a modification of Eq. (2.1) to include
a history of a finite number of previous perturbations.
All these schemes are important refinements of the con-
trolling algorithm, but the central, innovating theme for
controlling unstable periodic orbits contained within a
chaotic attractor is contained in the original OGY for-
mula, Eq. (2.1).

(2.2)

III. NEURAL NETWORKS

The field of neural networks and neural computing is
so vast that we give here only a brief introduction to the
subject. For the application of using neural networks for
controlling chaos we restrict ourselves to a discussion of
the feed-forward backpropagating neural networks. Such
networks have been used to predict chaotic time-series
time [2] and to reconstruct chaotic attractors using noisy
data [3]. For a general survey of neural networks and for
further references see [9].

The general backpropagating neural network consists
of a series of input and output ports connected by way
of a set of intermediate units arranged in a series of hid-
den layers. In this work we used both single and double
hidden layer neural networks, but found no significant
difference in performance between the two. For simplic-
ity we discuss only the single hidden layer network.

Each unit of the neural network has an associated in-
put and output function. The input to a particular unit
is the weighted sum of all the outputs of the previous
layer plus an offset. This input is then passed through
an activation function, typically some type of sigmoidal
function. The output of the unit is then a continuous,
smooth, monotonic function of the input which approxi-
mates the firing (the on-off nature) of real neurons. This
output, along with the rest of the outputs for that layer
are then used as the inputs for the succeeding layer, and
the process repeats itself.

Moving from left to right in Fig. 1 we can follow the
progression from initial input to final output for our sin-
gle hidden layer neural network. Let us designate the
inputs as {z;,z2} and the single output as y°"*. The
input to the jth unit of the hidden layer is given by
= + Ziwg)wi. (Although we only have one
hidden layer here, the superscripts enumerating the par-

ticular layer are included for purposes of indicating ex-
(1)

tensions to more than one layer.) The quantities w;;

are called the weights and by) are called the biases. The
input IJ(-U is converted to an output O§1) by being passed

through an activation function, O;l) = 3(1 + tanh I}l)).

FIG. 1. A backpropagating neural network
shown here with two inputs, one hidden layer
consisting of four units, and one output.

49 USING NEURAL NETWORKS FOR CONTROLLING CHAOS 1227

Other activation functions, such as the sigmoid O(z) =
[1 + exp(—kz)]~!, are commonly used in the literature.
The output may be symmetrized to (—1,1) instead of
(0,1) used above. The requirement for the activation
function is that it be monotonic, bounded from above
and below and everywhere differentiable. The output is
obtained in a similar fashion as a weighted sum of the
outputs plus a bias, y°* = () + >, w§°)0§1). The su-
perscript (o) indicates the output layer. If there were
more than just one output unit, these weights and bias
would have an additional index relating the ith previous

input to the jth output (i.e., yg-o) = b;o) +3; wg?)Ogl)).
The neural network is easily generalized to include an
arbitrary number of hidden layers by using the following

input and output functions for the jth unit in the nth
hidden layer, IJ(-") = b;") + 3, wg’)Ogn_l) and O;-") =

31+ tanhI_,,(»")).

The neural network can be made to produce a desired
output by training it on a large set of inputs. Designating
the inputs as a discrete time series {x,}, the training
proceeds as follows: (1) begin with a random assignment
of weights and biases, (2) calculate the output {y2"'}
for all sets of input data, (3) compute an error function,
Q= ZnN:1(yn — y3"*)2 where N is the number of points
in a given input data set, and (4) adjust the weights and
biases to minimize the error.

The crucial step is the last one. The name backpropa-
gating is derived from the procedure used for propagat-
ing the error backwards to adjust the weights and bi-
ases. The standard method of steepest descent is used
to perform the minimization. The weights and biases are
treated as independent parameters {c;}, where ¢ takes on
as many values as there are weights and biases. By differ-
entiating the error @ with respect to a; one can compute
the change in the error for a given change in an indepen-
dent parameter [3], 6Q = (0Q/0a;) da; where (0Q/dc;)
is evaluated at the current value of the parameters. To
insure that adjustments in «; produce a decrease in the
error, one chooses da; = —vy(8Q/8c;). The quantity
7 > 0 is called the learning rate and is chosen to be small
enough so that the desired accuracy in the error can be
achieved, but large enough so that this can be obtained in
a reasonable amount of time. This formula for da; can be
altered to steer the adjustments of the parameters in the
same direction regardless of the direction determined by
the gradient. This is accomplished by adding a propor-
tional value of the previous adjustment to the formula
above, da; = —v(8Q/0c;) + pdal™", where p > 0 is
another rate, appropriately called the momentum.

In a recent paper, Albano et al. [3] successfully trained
a single hidden layer backpropagating neural network to
reconstruct the chaotic attractors for the logistic and
Hénon maps using noisy as well as noise-free input. The
noisy data were generated by adding Gaussian random
noise to the clean data produced from the dynamical
equations. Enough noise was added to produce a noise
variance equal to the signal variance, so that the attrac-
tor was obscured. The neural network was trained on the
clean data until a minimum error Q was obtained. By
then feeding in various length input sets of noisy data

the neural net was used to predict future values of the
times series and construct a first return map, a plot of
Tpy1 VS T,. In addition, the authors were able to use
these reconstructed attractors generated from the neural
network to calculate a correlation dimension to within
10% of the theoretical values.

The authors point out that there did not exist consis-
tent criteria for determining the optimal architecture of
the network (i.e., the number of input and hidden layers),
or of the optimal size of the training set. In addition, dif-
ferent initial random weights often led to different min-
ima of the error function, resulting in different levels of
performance even when the same input data were used.
They pointed out that one set of initial weights and biases
might lead to a time series which successfully constructed
the whole attractor, while another might reconstruct only
short segments, or get trapped in a periodic motion on
a small set of points. The latter behavior could often be
alleviated by reconstructing the attractor by producing
several sets of outputs generated from randomly chosen
starting points in the input data set [3].

IV. USING BACKPROPAGATING NEURAL
NETWORKS TO CONTROL CHAOS

The objective of this work is to demonstrate that a
neural network can be used to implement the OGY for-
mula, Eq. (2.1). Since the formula for ép, in Eq. (2.1) is
linear in the phase-space variables £,,, a neural network
with input ports being fed a time series of the phase-
space variables can be trained to produce the perturba-
tion times series necessary for control. The neural net-
work (NN) need not be trained over the whole of the
chaotic attractor. Instead, it is necessary to train the
network only in the vicinity of the desired fixed point of
the unstable periodic orbit. Since the output dpXN, of
the network does not depend on any previous perturba-
tions, the neural network is not being used, in this case,
to predict the next value of the chaotic time series near
the fixed point. It is in fact being taught the simple task
of learning the coefficients {3;} of a linear function of the
inputs of the form ép, = Zil Bi (&L — €%), which is the
structure of Eq. (2.1). We also demonstrate that a neural
network can be used to implement control in cases where
Eq. (2.1) is modified to include the previous perturbation
0prn—1. In this case, the output of the neural network dp,,
is no longer a simple linear function of the inputs due to
the recursive nature of the control formula. The neural
network then implicitly predicts the value of the chaotic
time series in the neighborhood of the fixed point and
uses it to construct the controlling perturbation.

A. Training the neural network on a linear function
of the inputs

In this work we demonstrate our results on the Hénon
map. This is a two-dimensional mapping with a correla-
tion dimension ~ 1.25 given by

1228 P. M. ALSING, A. GAVRIELIDES, AND V. KOVANIS 49

Tpy1 = A—2z2 + Bz, ;. (4.1)
For parameter values 4 = 1.29 and B = 0.3 the map-
ping is chaotic. Figure 2 is a plot of z,,,1 vs z, that
displays the Hénon attractor. The Hénon map is a con-
venient tool to work with since all the structural coef-
ficients in Eq. (2.1) can be worked out analytically [6].
Equation (2.1) then takes the specific form

opH =1.840(z, — zp) — 0.300(zp_y — zp), (4.2)
where xp = 0.838 486 is the value of the fixed point for
the period-1 unstable orbit. We used a neural network
consisting of two input ports, one hidden layer with four
units and one output port. The training of the neural
network was performed using pairs of data (z,,z,-1),
generated from Eq. (4.1), which were within a given
enn = 0.05 of zp, and sending these to the first and
second input ports of the network. During the training
process the perturbations generated by the neural net-
work were not used to alter the input time series. The
network was therefore trained on an unperturbed chaotic
signal, Eq. (4.1). When used for controlling, the output
generated by the neural network was used to perturb
the time series, which was sent to its inputs. The per-
turbed Hénon map then produced iterates of the form
LTn+1 = A+ 6p11\11N - 1'31 + Bl'n_,].

The single output generated by the network §pN~ was
compared to dp computed from Eq. (4.2). The error Q
was computed upon each output of the network. When
the OGY formula was used to lock onto the unstable
period-1 orbit, the values of §p were chaotic and fluctu-
ating around a mean absolute value of ~ 0.1 —1.0 x 1073,
With this in mind, the number of data points used to
train the neural network was chosen so that the error
(which is seen to follow a decaying exponential scaling
with the number of input data points) was reduced to a

2.0 T T T T T T
15+ s
10+

05— /'!

00}

Xnsl

05}

15 B

2.0 1 1 | | | | 1
-2.0 -15 -1.0 -05 00 05 10 15 20

FIG. 2. The Hénon attractor generated from Eq. (4.1) with
A =129 and B =0.3.

value near or below 1.0 x 1073, This number was typi-
cally in the range of 103 —10* when Eq. (4.2) was utilized
for training the neural network. Once trained, the per-
turbations generated by the neural network were used to
perturb the time series upon each iteration of the Hénon
map, not simply when the iterates fell within the usual
controlling region specified by the OGY formula (see dis-
cussion of £ in Sec. II above). The neural network pro-
duces unacceptably large perturbations when the iter-
ates fall outside the controlling region. However, when
an iterate ergodically falls within the controlling region,
for which the neural network has been trained, it pro-
duces the perturbations necessary to achieve and main-
tain control. To prevent the large perturbations, which
were sometimes generated when the Hénon iterates were
far from the fixed points, from causing the time series to
diverge to infinity, we applied only those perturbations
which were less in magnitude than some predefined max-
imum value, §ppax- This maximum was chosen to ensure
that the applied perturbations did not kick the Hénon
map outside of the chaotic regime. We typically used a
value of pmax = 0.05—0.10. Figure 3 shows a comparison
of 6pH and §pNN generated by the neural network once
training has been completed and a plot of the unstable
period-1 orbit of the Hénon map controlled by the neural
network. Note the three separate lines relating §pN" to

020
P
<5
7~
015 s
peye
6#
C PN
o010 s (a) |
e
005 L p
~ ~
J g
s
z 00 ol
oA
ol
w s
005 b
P
010 | el
P
2
015 A%
&
~
020 bp
020 0I5 010 005 _ 000 0.05 010 015 020
OGY
5p°%(n)
T T T T
= i
10k _
i 1 1 L L
0 500 1000 1500 2000

n

FIG. 3. (a) 6pN™ vs 8pf for a neural network trained on
Eq. (4.2) with inputs (zn,Zn-1); (b) z» vs n. Control was
applied continuously by the neural network to z, for n > 100,
not just when |z, —zp| < e K 1.

49 USING NEURAL NETWORKS FOR CONTROLLING CHAOS 1229

6pH in Fig. 3(a) for this number of training points. The
error has been reduced in this case to ~ 0.01, a factor of
10 over the criteria stated above. Even with an error this
large, control can be achieved and maintained. The lines
in Fig. 3(a) can be compressed into a single line passing
through the origin by training on a larger set of input
points.

There is a subtlety associated with the process of con-
trol performed by the neural network. As stated above,
the network is trained on an unperturbed map; i.e.,
Eq. (4.2) is used for training the network, but during
training, no perturbations are applied to the input time
series. However, once the network is trained the map-
ping, Eq. (4.2), is altered by the applied perturbations
generated by the network, £, 1 = A+3p\N—z2+Bz,_1.
In essence, the fixed points of the altered map are shifting
around due to the applied perturbations. Even though
the neural net has not been trained on such an input
set, it is still able to achieve control. During the route
to controlling the chaotic signal, the perturbations gen-
erated by the neural network are shifted away from the
values 6pX that would be obtained if Eq. (4.2) were used
to control the Hénon map. However, when an iterate falls
within the controlling region the difference between p)\™
and Jpf is generally much smaller than £¥. The neural
network capitalizes on the fact that the OGY scheme is
robust, and the small but finite differences between the
values generated from the neural network and Eq. (4.2)
can be treated as tolerable noise. Analysis of the ability
of the neural network to maintain control in the presence
of noise reveals that it is as tolerant of noise as the OGY
formula, Eq.(4.2), upon which it was trained.

B. Training the neural network on a nonlinear
function of the inputs

The neural network can be trained to achieve control
utilizing a controlling scheme which involves the previous
perturbation. In the following, we used a neural network
with three inputs, one hidden layer consisting of six units
and one output. During the training process, the inputs
were (Zn_1,Tn_2,0pH_,) and the output was again 6p~.
Once the network was trained, the inputs were switched
to (Tn—1,Tn—2,0pNY,) and again the perturbations were
applied, as in Sec. IV A, to each iterate of the Hénon map
during the controlling phase. Two training formulas were
investigated, the usual OGY formula, Eq. (4.2), and

opH = Ay (— 6pf_| + [1.840(zp—1 — zF)

—0.300(zp—2 — zF)]), (4.3)
where)\, is the unstable eigenvalue of the local map M
having the value —1.84 in the case of the Hénon map.
Note that the usual OGY formula, Egs. (2.1) and (4.2),
uses the most current data pair (z,,z,—1) to form the
perturbation dpZ. In this case, the third input port con-
taining dpH_, is idle since Eq. (4.2) is independent of
this quantity. Equation (4.3) is an iterated form of the
OGY formula, which uses the previous pair of iterates

(zn—1,Tn—2) to calculate 8pH. Because past information
is used, Eq. (2.1) must be modified to include the previ-
ous perturbation §pZ ;. Here the third input port was
definitely not idle and the weights and biases associated
with it played a fundamental role in the training of the
network. The factor of A, in Eq. (4.3) arises because the
use of past data in the controlling formula involves using
essentially the “square” of Eq. (2.1) in order to produce
6pH. This delayed OGY formula and its generalization to
predict 6pX using past data of the form (Zn_k,Zn_1-k),
where k is a small finite integer, is derived and discussed
in detailed in [10]. It has potential applications for con-
trolling chaos in dynamical systems which involve fast
time scales [11].

For both training formulas, Eqgs. (4.2) and (4.3), the
neural network had to implicitly calculate the next iter-
ate z,, of the Hénon map and then use that iterate to
form 6pNN. Again the networks were trained only in the
vicinity of the fixed point. Figures 4(a) and 5(a) show
plots analogous to Fig. 3(a) for the case of training with
Egs. (4.2) and (4.3), respectively.

In the process of controlling there is an important dif-
ference between the neural networks trained on the usual
OGY formula and the delayed OGY formula. In the for-
mer case, the output of the neural network had to be
adjusted according to 6pNN — 6pNN 4 1.840 pYYN, in or-

n—1

0.10

0.08 . : (a) 4

1
008 006 -004 -0.02 0.00 0.02 0.04 0.06 0.08 010

0GY
5p°(n)

T T T T T T

.-‘..'.‘- %%
5k - (b) -
10} .
P71 S _

3 -

R o0 .
o5k . _.- —l
1o} .. J
ASE)t] 1 1 1 1

0 200 400 600 800 1000

FIG. 4. (a) 8pNN vs 8pH for a neural network trained on
Eq. (4.2) with inputs (€n—1,Tn—2,0pF_;); (b) . vs n. Con-
trol was applied continuously by the neural network to z, for
n > 100, not just when |z, —zr| < e K 1.

1230 P. M. ALSING, A. GAVRIELIDES, AND V. KOVANIS 49

der to achieve control. In the case of the delayed OGY
formula the direct output of the neural network was ca-
pable of achieving control. This was true for all training
sets, even when 107 points were used and the error func-
tion was reduced in magnitude to ~ 0.5 x 1073,

The fundamental reason for this difference lies in
the discussion concerning the output of the neural net-
work during the training and controlling stage raised in
Sec. IV A. Recall that the network is trained on an unper-
turbed map, Eq. (4.1), but during control the map is al-
tered by the applied perturbations to z,,,; = A+dp"N —
x2 + Bz, _,. Shifting indices from n — n — 1 and sub-
stituting this perturbed value of z, into Eq. (4.2), yields
to first order the correction +1.840 6pNN,. Thus the raw
output of the neural network, which has been trained
on a map where the fixed points are stationary, has to
have this correction factor added to it when the applied
perturbations begin shifting the fixed points around.

Such an adjustment to the output of the neural net-
work trained on the delayed OGY equation (4.3) is not
necessary. The reason for this is because during training
the third input port receiving épZ_ | contains implicit
information concerning the shifting of the fixed points.
This is the case since the derivation of Eq. (4.3) explic-
itly makes use of the shift of the fixed point in going from
the input pair (z,,_1,Zn_2) to the output point x,, .| (see

008 |- : »‘, -+ (a):

1
020 018 -0.16 -0.14 -0.12 -0.10 -0.08 -006 -0.04 -002 000 002 004 006

OGY
5% (n)

T T T T T T
st ’ (b) -
101 -
05k -

=
= o0l -
05 F J
1.0 r— -
s 1' 1 1 1 1 1
[200 400 600 800 1000

n

FIG. 5. (a) 6pYN vs 6pH for a neural network trained on
Eq. (4.3) with inputs (n—1,Zn-2,0p"_,); (b) zn vs n. Con-
trol was applied continuously by the neural network to x, for
n > 100, not just when |z, — zr| < e < 1.

[10]). When the value of the third input port is changed
to 0pNN, during the controlling process, there is still a
constant shifting between the output of the neural net-
work and Eq. (4.3). However, this shifting is now second
order in 6pNN, | and therefore acts as tolerable noise. The
price paid for using this formula is that the neural net-
work is less robust to noise than if Eq. (4.2) were used
for training, since the delayed OGY equation (4.3) is in-
trinsically less robust to noise. In [10] the authors show
that the controlling region for the delayed OGY scheme
is |Ay| times smaller than that of the controlling region
for the usual OGY scheme.

C. Training the neural network on an experimental
time series

In the previous two sections we have demonstrated how
a neural network can be trained to produce the pertur-
bations necessary to control the Hénon map for various
types of input data. This may give the erroneous impres-
sion that one must a priori have the deterministic map in
hand in order to train the neural network. However, this
is not the case. As indicated in Sec. II, the information
necessary for controlling an unstable periodic orbit of a
chaotic attractor can be constructed from a single exper-
imental time series of the uncontrolled system. Below we
discuss how this can be used to train the neural network.

Suppose that the phase space of the chaotic dynamical
system we wish to study is given by the vector Z(t), but
one only has access to an experimental, scalar time series
z(t) = H(Z(t)) (e.g., a current or voltage signal). The
attractor, of yet unkown dimension, can be constructed
from this scalar time series by the method of delay co-
ordinates [5]. One can form the m-dimensional delay
vector X (t) = (z(t),z(t—7),...,z(t — (m—1)7)), where
the delay 7 can be optimally chosen, for example, as the
first minimum of the mutual information function of z(t)
(see [12]). The components of X (t) act as psuedo-phase-
space variables from which a faithful reproduction of the
attractor can be produced if m is larger than the dimen-
sion of the attractor. The dimension m can be found by
standard procedures of computing correlation dimension
from time series [13].

Once m is known we can produce a Poincaré section
by defining t,, to be those times for which, say, z(t) = =,
where zq is a constant, or say, at the peaks of z(t) [i.e.,
z(t) = 0 and Z(t) < 0]. This produces an (m — 1)-
dimensional discrete-time vector £, = (z(t, — 7),z(tn —
27),...,z(tn — (m — 1)7)). For control, one needs the
local mapping 0§,+1 = M 8¢, about the fixed point &,
where 0¢,, = &, — €r. The local map M can be fitted
numerically from the experimental data.

Because of the use of delay coordinates, the Poincaré
map F, relating £,41 to &,, will depend on the previous
value of the control parameter p,_; as well as the current
value p, (7], én+1 = F(€n,Pn,Pn-1). The OGY control
formula is then a modified version of Eq. (2.1) in which
dp, depends on £, and ép,,_;. For example, for m = 3,
the OGY control formula will have the form ép,, = a(z,—
zp) + B(xn—1 — TF) + Y0Pn_1, [7]- Here the constants
{a, 3,7} can be determined from the local map M, which

49 USING NEURAL NETWORKS FOR CONTROLLING CHAOS 1231

is the numerical fit to the Jacobian of F. Once 6p2CY is
known, the neural network can be trained to produce the
required perturbations 6pNN to control the system with
or without the presence of small amounts of noise.

In the above sections we used an a priori given, deter-
ministic map, i.e., the Hénon map. This was done purely
for numerical convenience. From the above considera-
tions and, providing one generates a sufficient accurate
local map, it is immaterial to the neural net if §pO¢Y is
generated analytically or numerically from an experimen-
tal time series. Thus given an experimental time series
from a chaotic dynamical system, the necessary infor-
mation can be numerically extracted to train the neural
network to perform the control.

V. CONCLUSIONS

In this work we have demonstrated the feasibility for
using neural networks to implement schemes for control-
ling chaos. By considering controlling schemes which de-
pend linearly and nonlinearly on the inputs to the net-
work, we have shown that neural networks can utilize
their ability to predict chaotic time series to construct the
perturbations necessary to achieve and maintain control.
In previous efforts, neural networks have been trained
over the whole range of the attractor in order to recog-
nize geometrical quantities associated with the chaotic
dynamical system. For the application of controlling
chaos, the neural networks need only be trained on a set
of points in the vicinity of the desired fixed point of the
unstable periodic orbit. As far as the training of the neu-
ral network is concerned, we discussed how the training

set can be of analytical origin or extracted numerically
from an experimental time series.

In addition, we found that by limiting the output of the
neural network to some predetermined maximum value,
we could achieve control by letting the neural network
operate continuously on the time series. This is to be con-
trasted with the usual controlling methodology in which
perturbations are applied only in the vicinity of the fixed
point. When the iterates lay outside the controlling re-
gion the neural network produced perturbations too large
to be useful. However, when an iterate ergodically came
within the controlling region of the fixed point, where the
neural network had been trained, the network was capa-
ble of producing the perturbations necessary to control
the signal. The time to control a chaotic signal using a
neural network could be reduced by employing methods
of targeting [14] to steer the time series into the vicinity
of the fixed point more quickly.

In this work we concentrated on the feed-forward back-
propagating neural networks commonly found in the lit-
erature. By using new fast-training algorithms based
on matrix pseudoinverse methods [15], training sets and
therefore training times can be drastically reduced. This
is an important consideration for practical applications.
Investigations into using fast-training neural networks for
controlling large arrays of coupled chaotic systems are
currently being explored by the present authors.

ACKNOWLEDGMENTS

One of the authors (V.K.) would like to thank the Na-

tional Research Council for support of this work.

(1] T. Shinbrot, E. Ott, C. Grebogi, and J. Yorke, Nature
363, 411 (1993).

[2] A. Lapedes and R. Farber, Los Alamos National Labo-
ratory Technical Report No. LAUR-87-2662 (1987) (un-
published).

(3] A.M. Albano, A. Passamante, T. Hediger, and M.E. Far-
rell, Physica D 58, 1 (1992).

[4] E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett. 64,
1196 (1990).

[5] F. Takens, in Dynamical Systems and Turbulence, edited
by D. Rand and L.S. Younge (Springer-Verlag, Berlin,
1981), p. 230.

(6] E. Ott, C. Grebogi, and J.A. Yorke, in Chaos: Soviet-
American Perspectives on Nonlinear Science, edited by
D.K. Campbell (AIP, New York, 1990), p. 153.

[7] U. Dressler and G. Nitsche, Phys. Rev. Lett. 68, 1 (1992).

[8] D. Auerbach, C. Grebogi, E. Ott, and J.A. Yorke, Phys.
Rev. Lett. 69, 3479 (1992).
[9] P.J. Denning, Am. Sci. 80, 426 (1992).

[10] PM. Alsing, A. Gavrielides, and V. Kovanis, in
Chaos/Nonlinear Dynamics: Methods and Commercial-
ization, edited by H.S. Wisniewski, SPIE Proc. No. 2037
(SPIE, Bellingham, WA, 1993).

[11] A. Gavrielides, V. Kovanis, and P.M. Alsing, in Chaos in
Optics, edited by R. Roy, SPIE Proc. No. 2039 (SPIE,
Bellinghom, WA, 1993).

[12] H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, and L.S.
Tsimring, Rev. Mod. Phys. 65, 1331 (1993).

[13] P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).

[14] T. Shinbrot, E. Ott, C. Grebogi, and J. Yorke, Phys.
Rev. Lett. 85, 3215 (1990); 68, 2863 (1992).

[15] S.D. Pethel, C.M. Bowden, and C.C. Sung (unpublished).

FIG. 1. A backpropagating neural network
shown here with two inputs, one hidden layer
consisting of four units, and one output.

